精选数学家的故事简短50字(文案130句)
数学家的故事100字左右
1、数学小故事100字左右
(1)、但是他最喜欢的玩意儿是搞数学和作一点科学研究,有时他把所得到的结果写信给在远方有同样兴趣的朋友,有时就把自己的心得写在数学书的空白处。当时还没有出现数学杂志可以让他发表他的研究心得。
(2)、陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。
(3)、地下东西相对来说是跟地上的东西相比较起来,我们探测起来是有非常大的差别的。因为从地表以上到太空,到星球,那么我们都是可以直接观测到的,那地表是通过地质方法,我们可以地表上可以观测到。那么对于星空,我们通过望远镜可以看到,那么地下的东西,我们不能直接观测到。目前来说,我们的科技水平,我们只能通过各种各种不同的这个地球物理这些方法,间接地对地下这个物质进行探测,这就是这个地下的不可入性,这也就是我们对于深地,地下的奥秘探测的一个难点之一。用我们普通人说的话,就是我们看不进去,看不透这底下有什么,但是我们可以透过云层、星空看到其它星球,可以这样理解吗?可以这样理解。因为我们平常看的是透过空气来望星空,这是上天。下海也相对来讲比较容易,毕竟那个海水它的密度跟岩石那个密度相比较要差得多。而地下的岩石的那个密度非常得大,非常坚硬的岩石,阻隔了人们这些个几乎所有的工具,你往下边开采的话,都是非常困难的。并且它的温度也在增高,这个叫地温梯度,每增加100米,它的温度会增加一定的值。当然地球上不同的地方,这个值是不一样的,不同的。
(4)、终于大约在1850年前后,高斯的学生、德国数学家学生库默尔运用独创的“理想素数”理论,一下子证明了100以内除67以外的所有奇数费马大定理都成立,使证明问题取得了第一次重大突破。
(5)、读《数学家的故事》让我更加爱数学,更让我明白得了许多道理。
(6)、后来由昆被派到陈景润的病房当值班医生。这样,接触的机会多了,每次由昆一出现,陈景润都特别高兴。一天,陈景润关切地问由昆,家住在哪?有没有男朋友、有没有成家?由昆毫不设防,她便心直口快地说:“没有,没有,还早着呢。”以后,由昆也十分关心这位中国数学家,斗转星移,彼此产生了爱情。
(7)、我想以他的才能和人品来看,他不会做这样的事的。
(8)、尽管有很多的稿件都退回了,但据说剩下的还有3米多高。
(9)、 2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。
(10)、高斯在哥廷根大学时,有次有事迟到,赶到教室时几乎都已经下课了。高斯走进教室后,发现教师不在,黑板上写着几道题。高斯以为这些题目是今天的作业题,便把题目记下来。当晚,他花了一整夜时间去研究这些数学题,没想到的是,这些题目异乎寻常地难。高斯直到天亮也只解决了一道题,第二天他很沮丧地找到老师,把这些都告诉了他。
(11)、庆祝圆周率日的方式有很多,比如吃派,喝一种名字中含有“pi”的鸡尾酒(piacolada),玩和pi发音相近的彩罐游戏(piata)。这一天常见的庆祝方式包括:
(12)、当时,封建社会的英国等级制度很严重,中小学里学习好的学生,可以歧视学习差的同学。有一次课间游戏,大家正玩得兴高采烈的时候,一个学习好的学生借故踢了牛顿一脚,并骂他笨蛋。
(13)、中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。
(14)、六月把这个Read 猜想的证明贴到了网上以后,密歇根大学邀请六月做一个演讲,专门介绍这一工作。2010年12月3日,他在一个大报告厅里开始他的演讲,台下坐满了数学家,其中也包括那些在一年前还果断拒绝他的研究生申请的数学家。在这一天,六月的数学天赋终于得到了认可。“他的演讲优美清晰、准确到位,对于一个低年级研究生来说,能讲的如此透彻,实在难能可贵!”密歇根大学一位教授这样评价道。
(15)、但凡伟大数学家,无不是青出于蓝而胜于蓝,无不是超越的传奇人生。
(16)、1918年马克思诞生在一个犹太族律师家庭,他还曾转学到柏林大学法律系学习法律,很多人都知道,本来马克思家庭很富裕,父亲是律师,自己也曾当过律师,而他一生的大部分时间是花在哲学和历史研究上的,他23岁就拿到了耶鲁大学哲学博士学位,之后就担任《莱茵报》主编,因“林木盗窃问题”马克思维护农民的观点的发表,报社被政府查封,他毅然辞去了主编一职,从此正式展开了反政府的终生斗争,25岁那年马克思在报上又发表了一篇批评俄国沙皇的文章,俄国沙皇尼古拉一世非常不满,普鲁士国王接到沙皇的抗议后下令查禁莱因报,马克思因此失业了。在这期间,马克思认识了恩格斯,之后也就发生了众人皆知的马克思恩格斯之间的故事。恩格斯是工厂主子弟,他十分欣赏马克思的主张,马克思的研究就是在恩格斯的赞助下完成的,这一点和公爵赞助高斯类似。失业这年,也就是1843年,马克思与童年时代的女友燕妮结婚,马克思与燕妮的爱情是令人难忘的,燕妮生在一个贵族家庭,算是出生名门,她还是当地公认最漂亮的姑娘,有无数的追求者,燕妮的家离马克思的家只有几分钟,安妮与18岁的马克思私定终身,经过七年的等待,马克思25岁那年安妮挣脱传统束缚嫁给了马克思这个市井阶级,之后两人开始了这条道路注定的驱逐逃亡生活,这段姐弟恋婚姻经住了时间、现实的考验,伴随两人终身,即使在马克思最困难的时期,燕妮也一直陪在马克思身边,马克思作为一个反政府、主张革命的无产阶级精神领袖,驱逐注定是他人生的主旋律,但安妮对马克思的爱慕从未改变,晚年安妮患肝癌,马克思不离左右的照顾她直到离世,两年后,他们的大女儿去世,这年,马克思也与世长辞。马克思与燕妮共有6个子女,在被普鲁士驱逐去往伦敦后,由于物质困苦,2子1女先后夭折,而二女儿和三女儿最终都是自愿终结生命离开人世,马克思因为这条道路确实在家庭方面遭遇了无比惨痛的代价。
(17)、终于有一天,由昆对身边的数学家提出了疑问:“你是大数学家,有好多人崇拜你,你为什么偏偏选中我呢?”面对心爱的姑娘,陈景润急得满脸通红,他不会年轻人的山盟海誓,许久,陈景润才说出一句话:“我想过了,如果你不同意,我这一辈子就不结婚了。”正是这一句,使由昆不再犹豫,她坦然接受陈景润的感情,并且相依相扶,共同走过了16个春秋。
(18)、六月也就有了很多机会跟老广学数学,老广从具体的例子开始,然后介绍自己的成名大作。老广告诉六月,在证明了特征为0域上的奇点消解定理以后,他花了数十年来研究特征p的情形,这是目前一个主要的公开问题。老广语重心长告诉他,他可是花了毕生精力来研究这个问题,老广已经把六月看成是自己的徒弟,他很希望六月能够接过他的衣钵。
(19)、六月并不是那种从小就是学霸,传说中的别人家的孩子。他小学时成绩平平,并且自认为数学很糟糕,十多岁的时候曾梦想做诗人,二十四岁之前都不晓得自己要干嘛,更没想过有一天会成为数学家。直到一次偶然的机会,他遇到了生命中的贵人,接触到了现代数学。这位贵人把他带进了核心的数学领域,六月沉浸其中,刻苦专研,一步一步走向了数学的顶峰。
(20)、(1)单峰值(unimodal)。也就是这个序列总是先递增,到达某个最大值(顶峰)以后就一直递减,不会再上升。
2、数学家的故事简短50字
(1)、1661年牛顿进入了剑桥大学的三一学院,那年他19岁,那时学校的教学是基于亚里士多德的学说,但牛顿更喜欢阅读一些笛卡尔等现代哲学家以及伽利略、哥白尼和开普勒等天文学家更先进的思想。1665年,22岁的牛顿发现了广义二项式定理,并开始了微积分的创建工作。同年,牛顿大学毕业获得学士学位,那一年为了预防伦敦大瘟疫大学关闭。之后两年是牛顿一生中最重要也是最具创造力的两年,这两年牛顿在家中继续研究微积分学、光学和万有引力定律,并在这两年完成了最核心的工作,他最重要的成就包括万有引力定律、三棱镜分解光、微积分都是在这两年完成的。牛顿最著名的科学巨著《自然哲学的数学原理》是在1687年出版的,而这本书包括三大运动定律和万有引力定律,牛顿把地球上物体的力学和天体力学统一到一个基本的力学体系中,创立了经典力学理论体系,正确地反映了宏观物体低速运动的宏观运动规律,实现了自然科学的第一次大统牛顿的这本巨著是人类对自然界认识的一次飞跃,而此书也让牛顿得到了世界的认可,从此无数人开始拥立这位改变人类宇宙观的伟人。这之后牛顿的人生道路无人能挡,《自然哲学的数学原理》后两年,牛顿当选为国会议员,1689年到1690年和1701年牛顿成为是皇家科学院的成员,到了1703年牛顿就被坐上了英国皇家学会会长的交椅,并任职24年之久,他同时也是法国科学院的会员,到了1696年,牛顿通过财政大臣的提携迁到了伦敦作皇家铸币厂当监管,一直到他去世。牛顿一生获得的最高荣耀是在他53岁那年,在1705那年牛顿被安妮女王封为爵士,对那个时代的英国人来说,这是无上的荣耀,他是第一位升至爵士的科学家,这也是牛顿一生最辉煌的时刻。牛顿的一生,是关于科学的传奇,在美国学者麦克·哈特所著的《影响人类历史进程的100名人排行榜》中牛顿名第仅次于穆罕默德,而据2003年英国BBC一次全球性评选最伟大的英国人活动中,牛顿更当之无愧的被评为最伟大的英国人之首。牛顿传奇的一生最后刻进了他的墓碑,他的墓碑上永远留着“上帝说,降生牛顿,于是世界充满光明”,或许,牛顿的传奇再无人超越。
(2)、祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在1415926和1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
(3)、费马在数学上的贡献是很大的。他和帕斯卡(B.Pascal)通过书信讨论赌博的问题里的数学规律,两个成为古典概率论的基本理论的奠基者。他研究希腊阿波罗尼的圆锥曲线理论,而建立了座标几何的一些原理,可以说是和笛卡儿同样是解析几何的创立者。他利用曲线的性质,研究极大极小问题,是微分积分学的先驱者。
(4)、(广中平佑,六月和他妻子,图片来源于网络)
(5)、《数学悦读课》栏目介绍:本栏目将从数学与生活、数学文化等角度,推进学生的数学阅读,提升学生对数学的认知,激发学生的数学学习兴趣,感受数学思维的魅力。
(6)、陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。
(7)、在他小的时候,祖父经常给祖冲之讲一些科学家的故事,其中张衡发明地动仪,可以预测地震的故事深深打动了祖冲之幼小的心灵。
(8)、深地探测,不光仅仅是一个物理方法。地球物理方法,还要有真真正正的就是要进行打钻,这个叫科学钻探。因为现在人想下去,超过五千米的地下空间,人下去是非常非常困难的,最有效的一个办法就是进行科学钻探。现在地球上,咱们整个世界上已经实施的科学钻探,最深的是苏联,它在科拉半岛上有一个超深钻十二公里(千米)。你像科拉钻探一万两千米,往下打的时候非常的艰难,它打到一万米的时候,苏联那个时候搞过一次举国欢庆,一万米停了将近一年的时间,到处去做报告,做功勋,我们超过了美国,超过了美国九千多米的(深度)。人类的突破。对,人类的突破。然后它恢复生产的时候,就恢复钻探的时候,刚恢复不久,地下七千米的钻杆断掉在地下,也就是地下七千米的那个钻孔就没法用了,你要从它断掉的那个地方,去把那个井封上,从那个地方去往周边叫侧钻,往测方向再接着打钻。明白了,明白了。德国的那个钻也是发生了几次类似这样的事故,大的侧钻就进行了三次,越往下难度越大。说到了这个传统方法的优缺点,那接下来我们来看一看,我们这个发明一等奖,到底是怎么探测的呢?我们通过短片,去了解一下它的原理。
(9)、库默尔屈就为一个中学教师时,有一天上课,在黑板上运算却忘了七和九的乘积!他犹豫很久讲不下去时,有学生说答案是他依着写下了。
(10)、费马用这种“无穷下降”的方法,可以证明x4+y4=z4没有整数解,然后由这里他很容易证明x4+y4=z4是没有整数解。
(11)、17世纪中叶,两位数学巨人相机登上历史舞台。
(12)、天上星星闪烁,在祖冲之看来,这些星星很杂乱地散布着,而农村孩子们却能叫出星星的名称,如牛郎、织女以及北斗星等,此时,祖冲之觉得自己实在知道得很少。
(13)、这个科学家有充分的考虑,因为我们整个地球,比如说地壳,大陆地壳是(平均)三十多公里(千米)厚,我们的最深的钻孔才打了十二公里(千米),它连地壳的三分之一都不足。然后德国的那个是第二深,是九千米,我们中国在2001年到2005年进行了一口科学钻探,是五千一百米。然后我们前两年在东北叫松科一井、松科二井,那个科学钻探是七千米,这些个深度远远达不到说咱们普通公众可能忧虑的(程度)。会不会把地下的岩浆打出来,会不会引起什么地震,或者引起什么其它的灾难,或者是像你说的是这一个橘子变糠,完全没有达到那个程度。您刚才说的这个地壳的三分之一是什么概念?假如说我们把一个地球比做一个鸡蛋的话,它是什么概念?鸡蛋壳就相当于我们的地壳,大陆部分那个蛋壳的厚度是三十多公里(千米)。那么我们最深的苏联那个钻孔,用了几十年的时间,才打了十二千米,就不到三分之一。相当于我们蛋壳的三分之还没碰到蛋清呢。蛋清、蛋黄根本就没有碰到,所以人类为什么说入地困难,还远远达不到真正实现入地梦想的,这个梦想远远还没有实现。不过我们也真的希望人类对地球有更多的了解,而不是更多的索取。
(14)、丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?
(15)、马克思认为哲学是人类思想的解放,只有在科学的哲学指导下,无产阶级才能彻底批判资本主义社会,才能建立共产主义新社会,才能获得解放。马克思哲学观从人性着手,他认为人和动物区别是人是按照计划来实现生存所需的生活资料和生产资料,而这一切都是从劳动中得来,而人劳动就必然导致了生产关系及其他社会关系的产生,劳动生产力制约生产方式,生产方式决定社会关系。他提出生产方式、社会关系等构成了社会的基本架构并决定社会意识而社会意识又反过来制约人的活动的观点,按照他的观点,社会发展建立在劳动基础上,而劳动的群体就叫劳动阶级,他们是人类社会发展的基础构架。他认为他那个时代的资本主义劳动力没被看成基础,而成为了商人、资本家等掠夺财富的工具,劳动力成为了他们的商品,商人谋取利益靠差价,资本家靠无偿占有剩余价值获得财富,财富在私人手中积累就形成了资本,由于劳动市场不断扩大,需求不断增加,资本增值就最终是建立在牺牲劳动者利益的前提下,劳动者只够维持生存。他认为资本主义最大的缺陷在于资本家为了更大化的生产力与利润,必然会投资更多的金钱与资源用于科研,劳动价值会不断贬值,随着时间推移劳动力必然成为资本家的获得利益的机器。也就是这种历史唯物主义哲学观让马克思意识到这一现象是一种阶段性的演变,于是他认为资本主义必然走向灭亡,无产阶级必将因为解放并逐渐取代资产阶级,就像历史上所有的朝代更替一样,从母系社会到父系社会,从原始社会到奴隶社会,到封建社会,到资本主义社会,而无产阶级的胜利也必然使得劳动阶级成为主角,劳动阶级也将成为国家经济发展的重大力量。马克思认为无产阶级的阶级斗争必须由无产阶级的政党来领导,无产阶级政党是无产阶级的先锋队,这个政党代表着组织、领导和宣传作用。马克思认为在私有制社会中,独立阶级间的争斗具有不可调和的特点,统治阶级必须以强制性手段来加强统治,被统治阶级将成为统治阶级的剥削工具,统治阶级为了把阶级关系控制在一个合理范围之内,保证统治阶级的利益,维持社会秩序,所以建立了国家和法律,而无产阶级在这种秩序与法律的控制下要想争取自己的利益,要想获得自由与解放,就必须团结起来进行革命,而要实现共产,还不止如此,只有同时消灭无产阶级和资产阶级的旧有价值,消灭阶级,才能从根本上彻底消除剥削,进入共产主义社会。
(16)、比如曾任哥廷根大学数学系系主任的艾德蒙•朗道就他到过无穷多关于证明了费尔马大定理的信件,后来实在没有精力处理,就印了一批卡片,样子大概是这样的
(17)、然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。
(18)、这个问题可以转变成代数问题来看:是否这样的代数式x3+y3=z3有正整数解?
(19)、1980年华罗庚教授在苏州指导统筹法和优选法时写过以下对联:观棋不语非君子,互相帮助;落子有悔大丈夫,纠正错误。
(20)、这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的”。
3、数学家的故事简短20字
(1)、这些结果费马都没有写下他的证明。可是对于(1)18世纪的数学家欧拉(Euler)花了7年的时间才找到对(1)的证明。而对于德国大数学家莱布尼兹(Leibniz)于1683年,以及欧拉在1749年也证明是对的。
(2)、理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。
(3)、方程xn+yn=zn对于不等于零的正整数x,y,z,当n大于2时,是没有解的。
(4)、再谈高斯,1807年在高斯面临公爵阵亡失去资助,生活处于崩溃的边缘时,圣彼得堡向他发出邀请,但德国科学界通过努力硬是留下了这位天才,高斯一生没在圣彼得堡效力,他的一生奉献给了自己的祖国。无论是不是偶然,德国对天才的渴望必定对它在二战前的霸权地位有着重要的作用。
(5)、这是一本让青少年了解中国汉字的有趣味的通俗读物。全书选取了两百个左右的常用汉字,用图画加故事的形式,形象地讲解每个汉字。每个字一幅图,让你一眼看懂汉字的形与义关系。每个字一个演变过程,展示它们的前世今生。每个字一则妙趣横生的小故事,讲述了汉字中深藏的文化、历史、文学知识。
(6)、这项工作也迅速提升了六月的国际数学形象。除了获得了普林斯顿高等研究院的长期职位外,他也被认为是Fields 奖的有力竞争者。
(7)、四年来,六月和卡茨一直尝试定义不可实现拟矩阵上的有意义的霍奇结构。在这期间,他们注意到霍奇理论的一个特殊方面----霍奇指标定理或许就足够用来解释拟矩阵的对数凹性质。
(8)、 孙剑,四川省中学特级教师,南充市学术技术带头人,被四川省教育厅聘为初中数学教师省级培训员,南充市优秀中小学校长,四川省初中数学省级骨干教师。中国数学会会员,南充市数学专业委员会副理事长。撰写论文多篇。指导学生参加全国初中数学联赛,18人次获全国一等奖(金牌)。
(9)、来到了伊利诺伊,六月开始了他的数学研究之旅,他花了六年时间,最终完成了Rota猜想的证明。这个问题是56年前由意大利数学家Rota提出的,起源于图论。
(10)、祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的。
(11)、在1974年于加拿大温哥华举办的“国际数学家会议”颁发Field金牌奖给二个对数学有重要贡献的年青数学家(这奖是数学界所能获得的最高荣誉,等于科学上的诺贝尔奖)。其中之一是37岁的哈佛大学教授大伟·曼福特(DavidB.Mumford)。
(12)、由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。
(13)、后来,笛卡尔染上黑死病,在临死前给公主寄去了最后一封信,信中只有一行字:R=A(1-SINΘ)。
(14)、许多数学爱好者都对费马大定理感兴趣。沃尔夫斯凯尔是一位德国实业家,年轻时曾为情所困决意在午夜自杀,但在临自杀前读到库默尔论述柯西和拉梅证明费马定理的错误让他情不自禁地计算到天明,设定自杀时间过了,他也放不下问题的证明。数学让他重生并后来成为大富豪,为了感谢费尔马大定理的救命之恩,1908年这位富豪死时,遗嘱将其一半遗产捐赠设立沃尔夫斯凯尔奖:凡在2007年9月13日前解决费马大定理者将获得100000马克奖励。
(15)、1977年,陈景润因病住进309医院,见到了从武汉军区刚派来医院进修的由昆。过去陈景润连女人名字的边都不沾,连句话都不说的人,此次年近半百的陈景润见到由昆,眼睛一亮,亲切地和由昆打招呼,话也多了。
(16)、费马问题还没有完全解决,如果读者有兴趣可以先试试对n=3和5的情形证明,然后再往前走。对了,有一点要说清楚的是:那个十万马克的奖金,由于德国在1920年爆发了非常严重的通货膨胀,钞票跌值惊人,这十万马克变成了一文不值。
(17)、数学界此刻是十分冷静的,怀尔斯的证明被分为6个部分分别由6人审查,其中第三部分被查出有严重缺陷。怀尔斯不得不公开承认证明有问题。一时间怀尔斯的证明被认为是历史上继拉梅、柯西、勒贝格、里贝特(里贝特也曾称证明了谷山——志村猜想)等之后错误证明的又一例子。所幸怀尔斯绝地缝生,修补了漏洞。1994年10月25日11点4分11秒,怀尔斯通过他以前的学生、美国俄亥俄州立大学教授卡尔.鲁宾向世界数学界发了费马大定理的完整证明邮件。
(18)、拉格朗从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬。
(19)、高斯于1777年4月30日出生于不伦瑞克。高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。
(20)、因两人微积分的创立优先权之争,欧洲科学家分立为两派,甚至擦出了英德的政治火花。
4、华罗庚的故事
(1)、 亲爱的同学们,我们每天都会学习数学,那么你们知道哪些关于数学的故事吗?学习了解一些数学家的故事,以及数学史,有助于我们了解数学的发生和发展,了解历史上中外杰出的数学家的生平和数学成就;有助于感受前辈大师严谨治学、锲而不舍的探索精神;有助于培养兴趣、开阔视野、开拓创新.更深刻体会数学对人类文明发展的作用.那么今天就让我们一起来读一读孙剑编著的《数学家的故事》中《高斯的故事》吧。
(2)、11年后,英国领袖们争相恐后抬起牛顿灵柩,一位伟人离我们而去。
(3)、欢迎回到我们的演播室,首先还是给大家介绍一下我们今天请来的两位嘉宾,一位是中国地震局地球物理研究所的研究员丁志峰,欢迎您丁先生!另一位是中国地质科学院地质研究所的研究员苏德辰,欢迎两位!今天我们探讨的是深地(探测)这个话题,对我们普通百姓来说,对深地这个概念不是很清楚,两位先给我们解释一下,什么叫深地?到多深才能叫深地?对于我们地球来说,地球的半径是6371千米,那么地球里面可以分成很多层,从地球结构上来说,那么深地的话,可以一直到地核那个深度。我们来看一下。
(4)、读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。
(5)、欧拉由于过度的工作,欧拉在二十八岁时得了眼病,并最终失明。欧拉完全失明以后,仍然凭着记忆和心算进行研究,直到逝世,竟达17年之久。欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。
(6)、他们都一一印证了认知自我、认知世界的重要性。
(7)、约翰·伯努利后来曾这样称赞青出于蓝而胜于蓝的学生:“我介绍高等分析时,他还是个孩子,而你将他带大成人。”两年后的夏天,欧拉获得巴塞尔大学的学士学位,次年,欧拉又获得巴塞尔大学的哲学硕士学位。1725年,欧拉开始了他的数学生涯。
(8)、 同学们,读完了高斯的故事,希望你们也能像他一样,勤思考多练习。
(9)、也许,欧拉的命运注定坎坷,1771年,大火无情的烧掉了欧拉大部分藏书和手稿,上帝无情的摧残着这位花甲老人,沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来,欧拉有常人没有的特质——适应性,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗,正是这种特质,欧拉硬是凭借着他那独有的天才般的心算能力和记忆力以口授的方式继续进行着科学研究。欧拉同阿基米德、牛顿、高斯一同被列为数学四杰。作为高产高效率的数学家的代表,欧拉一生发表论文和著作500多种,在逝世时,还有400种未发表的手稿,经后人整理的《欧拉全集》达到74卷,而排名第二的柯西是27卷。事实上,他的著作直到20世纪80年代也未出齐,他的论文高产纪录直到20世纪才被犹太人保罗·埃尔德什打破。欧拉的《无穷小分析引论》、《微分学原理》、《积分学原理》是数学界永恒的经典著作,欧拉还引入了空间曲线的参数方程,和莱布尼茨一样,他也是一位符号大师,莱布尼茨有∫、a/b、a:b、∽、≌、∪、∩等沿用至今的符号,欧拉设计了π、i、e、sin、cos、tg、△x、Σ、f(x)等符号,这些符号对分析学的发展起到了一定的推动作用。欧拉在数论、代数、无穷级数、函数、微积分学、微分方程、几何学方面都有惊人的贡献,但他最大的贡献是分析学,欧拉被尊为‘分析的化身’,欧拉还引入了著名的Γ函数和B函数,数学交流方面,欧拉从19岁起和拉格朗日通信,这引起了变分法的诞生,18世纪中叶,欧拉和其他数学家在解决物理问题过程中,创立了微分方程这门学科,所以会有介绍说欧拉是把数学推向物理领域的人,除此之外,欧拉还是解析数论的奠基人,他提出欧拉恒等式,建立了数论和分析之间的联系,使得可以用微积分研究数论。后来,高斯的学生黎曼将欧拉恒等式推广到复数,提出了21世纪最具挑战的难题黎曼猜想,在几何方面,欧拉解决了哥尼斯堡七桥问题,28岁那年,欧拉解决了计算慧星轨道的难题,这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法三天便独立完成,这段故事能与高斯发现谷神星相媲美,高斯曾说:“研究欧拉的著作永远是了解数学的最好方法。”
(10)、现在对于一般的整数n,如果能表示为n=pm这里p是大于2的素数。则费马方程可以写成:
(11)、另外和院士,他对这个信号处理,他能够接受的信息也多,比以前的方法要多得多得多得多。不是一个数量级的,然后它能够接受很多很多的信号,然后从中分析出有用的信息,然后再把这个有用信息提取出来,还原出来你地下是什么状况。那么我们搞地质的人,就希望越精准越好,那么曲面波和平面波,平面波只能比如说给一个很粗糙的一个形态。他这个曲面波,就能够(反映)非常精准的一个形态,那么在他那基础之上,我们是打钻也好,是搞生产也好,我们就能够有的放矢了,那就能够节约很多很多的成本,效率也就提高了。探测仪器这方面他有了更多的创新,那么在电磁波的能量等于它的一个源,源的能量相比国际先进水平来说的话,他又提高了一大截。目前来说,实际上(国外)最强的基本上是五十千瓦的能量,电磁能量往下探测。他这个新的发明的设备可以达到两百千瓦,那么这能量比通常的电磁波的方法,探测方法能量更足。那么我们知道探测的地下结构越深,我们需要这个能量就越高,这样我们才能获取更多的深部返回来的信息,那么在这方面他的这个发明对于我们深地探测来说是非常有用的。
(12)、襄阳市图书馆“齐悦读”读书会,以“携手共进,博采众长,沐浴书香,悦读成长”为宗旨,以“播撒智慧种子,激发内在潜量,携手阅读成长,共创和谐襄阳”为核心理念。
(13)、由于费马对他的大定理在n=4时能证明,很可能他犯了错误,以为他这个方法是无往而不利,也能够解决所有的情形。
(14)、比如说我们在江苏东海打科学钻探,地表就是我们平常的温度,到了5100米(深)的时候,它的温度已经达到了一百五十多(摄氏)度,那么你地下的那些个仪器设备,你在平常环境下很正常。对。五千多米就无法正常工作了,高温度到压情况下,你要想正常的来取得那些数据,那么就需要研制高精尖的那些个(设备),至今为止通过岩石到地下的人类的活动,只有四千多米(深)的采矿,就是在南非。那已经很深了。已经非常非常深了,并且是非常困难了,在咱们中国能达到一千多米(深度),两千米左右在山东开金矿。我本人到过地下一千米,一千米您看到了什么?那个真实的感受是什么?地下一千米,主要的感觉就是温度明显的比上边要高得多,所以必须要有很强的那个通风设备,在地下非常强的通风才能保证下面的那个温度比较正常,湿度比较正常,然后才能够进行其它的真正的采矿生产活动,人才能在下面生存。
(15)、举个例子,我们要是探测地下的油田、石油,那么这是用地震方法,是最有效的。因为地震方法地震波的方法,它最有效的就是可以探测到下面地层的分层结构。电磁波这方面,可能比地震波更差一些。在地球探测方面,这个不仅仅是一项技术发明获得了成果,相关设备的研究等等,都一下子同步提升了,那在这方面我们这项发明,在装备上也是打破了国外的一些垄断,两位怎么看待这方面的问题?我觉得这个发明也是在国际上也是影响比较大的,那么何院士他这个发明,它包含了既有这个理论上面、处理方法上面,还有设备上的创新,那么一个团队,能在这么多的方面全面地去创新,那在国际上还是非常少见的。我打这个比方不知道对不对,我们把地球比喻成一个橙子,我们在不停深地的勘探、探测,然后发现里面有宝藏,我们把它提出来,就像把橙汁吸出来之后,这时间久了,橙子会不会糠了,会不会影响到我们地球的健康?你要是说时间久了的话,可能会影响,但现在来讲人远远没有达到那个可以忧虑的那个程度。那这个度我们人类是有考虑,科学家是有把握的吗?
(16)、在猜想提出的头二百年内,数学家们相继证明了对于7等情形,定理成立。但对一般情况,数学家们仍一筹莫展。
(17)、祖冲之不喜欢读古书,5岁时,父亲教他学枟论语枠,两个月他也只能背诵十几句。气得父亲又打又骂。可是,祖冲之非常喜欢数学和天文。
(18)、费马是否不能证明,而故意在书页上写他证明了,而“自我欺骗”呢?像阿Q那样的求得心灵上的一种安慰?
(19)、图论的研究对象就是图,图简单来说就由顶点和边构成的集合。比如一个三角形就是由三个顶点,三条边构成的图,四边形、五边形都是图。图是组合数学最基本的研究对象。数学家考虑这样一个基本的问题。给定一张图,给你q种不同的颜料,将这张图上的所有顶点用这q种颜料来染色,要求是有边相连的两个顶点不能染上相同的颜色。问你一共有多少种不同的染色方法?
(20)、直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。
5、数学家的故事50字左右
(1)、各位好,欢迎各位收看《透视新科技》!我是主持人胜春,平时我们形容办一件事难,说“比登天还要难”。其实这句话在科技界来讲是恰恰相反的,因为在科技人员面前,他们会觉得这个入地比登天难得多。举个例子,人类早已经可以登月了,那月球与地球的距离是四十万千米左右,可是就在几年前,人类精准探测地下的距离深度只有几百米深。不过在2018年,有一项科技成果获得了国家技术发明奖的一等奖。这项成果改变了过去,它可以让人类探测地下深度精确到几千米,这是一项什么样的发明呢?我们来看一下。
(2)、“丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。
(3)、在1659年费马给他朋友的信中写道:“如果有一个任意给的素数4n+1不是二个整数的平方和。对于给定的这个素数,我们还可以找到比这个还小的形如4n+1的素数也有同样的性质。因此用这个方法继续找下去,也就是我发现的‘无穷下降法’,最后我们得到5这个素数,照理5是形如4n+也该不是二个整数的平方和。可是这是明显的错误,矛盾产生了!因此4n+1形的素数一定是二个整数的平方和。”
(4)、关于马克思,前面几乎只字未提,这里需要详细讲解,马克思是世界无产阶级、科学社会主义的创始人,是伟大的政治家、哲学家、经济学家、革命理论家、社会学家、革命家,马克思是无产阶级的精神领袖,是当代共产主义运动的先驱,他被认为是社会学三巨头之主要论著《资本论》、《共产党宣言》,马克思最广为人知的哲学理论是他对于人类历史进程中阶级斗争的分析,他认为人类发展史最大矛盾是阶级斗争,而阶级斗争的本质是阶级利益矛盾,马克思的历史唯物论认为资本主义终将被共产主义所取代。他提出了辩证唯物主义与历史唯物主义,辩证唯物主义认为宇宙的本源是物质,物质是运动的同时又是有规律的,规律是客观的,而客观规律又是可被认知并利用的,并强调了主观能动性,唯物主义彻底否定了唯心论,历史唯物主义认为一切重要历史事件的根本原因和伟大动力是社会的经济发展、生产方式和交换方式的改变,不同的社会形态有不同的对立阶级,阶级斗争的根本原因是阶级利益,而阶级斗争是社会发展的直接动力,更指出社会革命是阶级斗争的最高形式,历史唯物主义把广大人们群众看作是社会发展的创造者,同时这种创造受历史条件制约。
(5)、牛顿的心灵受到这种刺激,愤怒极了。他想,我俩都是学生,我为什么受他的欺侮?我一定要超过他!从此,牛顿下定决心,发奋读书。他早起晚睡,抓紧分秒、勤学勤思。
(6)、成都市高新区锦城大道1000号天府世家1号门旁商铺3楼
(7)、 不到一分钟的工夫,小高斯站了起来,手里举着小石板,说:“老师,我算出来了。”
(8)、第二天早,他就拿了一段妈妈量鞋子的绳子,跑到村头的路旁,等待过往的车辆。
(9)、高斯1777-1855年德国数学家、物理学家、天文学家
(10)、25岁才获得硕士学位的牛顿的一生比莱布尼兹坎坷万分。
(11)、不由地,我想到了许多人,有文化名人、爱国将士,和我身边的同学。
(12)、莱布尼茨1646-1716年德国律师、哲学家、数学家
(13)、他最近用代数几何的工具证明了如果费马方程xn+yn=zn有整数解,那么这个解可以说是“非常的少”,这是目前对费马问题最接近解决的结果。他的方法是这样:如果(xm,ym,zm)是xn+yn=zn的无穷多解,我们根据zm的大小来排这数组(xm,ym,zm),由小排到大。那么我们就能找到一个常数a大于零和另外一个常数b,使得zm恒大于1010am+b,这个数是像天文数字那么大!
(14)、为什么π如此重要呢?π的部分迷人之处在于它无穷无尽。π小数点后面的数字永远不会有终点,而且出现的方式也没有规律。然而只要是和周期性重复的一些规律有关,比如心率或行星绕太阳旋转的周期,我们就会遇到π。因为周期表示时间而圆表示空间,周期和圆是同一个实物的两面,而π是沟通二者的核心。
(15)、六月刚到伊利诺伊的时候,其实并不知道有这样一个问题,跟大多数一年级的研究新生一样,他要上很多的课程,没有太多时间做研究。但是由于广中平佑对他有过三年的指点,他开始有一些想法。在那年冬天,六月把从老广那里学到的奇点理论技巧巧妙地运用到图上面。在这过程中,他发现在图上构造奇点,就可以利用奇点的相关理论来推导出原来这个图的很多性质。例如就可以解释为什么染色多项式是对数凹的。发现这样的结果后,六月异常兴奋,于是就去查阅图论的文献,是否有前人证明过这样的结论。他这才发现,原来他已经在不知不觉中证明图论中的一个重要猜想。
(16)、图的染色多项式的引进,最初是为了用来解决著名的四色问题。数学家通过大量计算发现,图的染色多项式本身也具有非常有趣的性质,比如这个q^3-3q^2+q,它的每项系数分别是:-取绝对值后为:这个数列有两个性质。
(17)、卖钢琴的厂家有20台钢琴。一天,来了4个小朋友他们都抢这要这20台钢琴。只有亚亚一个人突然平静了下来,说:“我们可以分一分呀!”卖钢琴的阿姨说:“对呀,我怎么没想到。”后来星星说:“那我们怎么分呢?”谁能回答星星的问题,亚亚说。一个叫红红的小朋友说:“我能回答,20除以4=所以我们每人能分到5台钢琴了。”亚亚、星星和阿姨,说:“太棒了。”
(18)、字文远,出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。
(19)、在那次报告以后,密歇根大学向他伸出橄榄枝。2011年,六月就转学到了密歇根大学。这时,六月发现Read 猜想其实是一个更宏大的问题Rota猜想的一个特例。
(20)、祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径。量来量去,他发现,车轮的直径确实不是圆周长的1/
(1)、 孙剑编著的《数学家的故事(彩插珍藏版)/百读不厌的经典故事》是开启数学大门的钥匙,为我们介绍了欧几里得、高斯、欧拉、祖冲之、刘徽古今中外的53名数学家的生平、主要数学思想,带领我们徜徉在数学故事的长廊中,揭开数学的秘密,让人倾倒于数学的魅力,轻松爱上数学。例如:阿基米德用数学战胜罗马战舰,牛顿在干农活时沉迷于数学问题,欧拉巧思妙想帮爸爸扩大羊圈,十岁的高斯迅速算出五位数学等差数列求和等故事。
(2)、观看《少年派的奇幻漂流》(一个名为pi的少年的冒险故事)。
(3)、隔了一会儿,华罗庚见大家还无下联,便将自己的下联揭出:“九章勾、股、弦。“《九章》是我国古代著名的数学著作。可是,这里的“九章”又恰好是代表团另一位成员、大气物理学家赵九章的名字。华罗庚的妙对使满座为之倾倒。
(4)、六月目前是美国普林斯顿高等研究院的ClayFellow,这个Fellow由美国克莱数学研究所提供资助,奖励那些最有潜力的青年研究学者。此外,普林斯顿高等研究院也已经给六月提供了更一个长期职位,据说这个职位此前仅给予过Voevodsky和吴宝珠,而这两位后来都是Fields奖获得者。于是有人预测,六月将是2018年或者2022年的Fields 奖候选人 (六月出生于1983年,到2022年的时候还不满40岁,仍有获奖资格)。
(5)、此后近半个世纪,费马大定理证明都停滞不前,直到二十世纪前期大数学家勒贝格向巴黎科学院提交了一个费马大定理的证明论稿,由于勒贝格当时的权威声望,大家都以为这下问题解决了,但经过广泛传阅其证明稿件,人们遗憾地发现这位大数学家的分析证明还是错的。
(6)、话说在300年前的法国的Toulouse城,有一个地方议会的议员名叫费马(PierreFermat1601—1665)。这人是律师出身,闲来无事不喜欢莺歌燕语,或者作围城之战,或者信步在庭院里练武。可以说是一个喜欢安静生活,不想追逐权利,淡泊功名的人。他懂几种外国语文,有时就用希腊、拉丁或者西班牙文写写诗词自我朗诵消遣。
(7)、最后我们要讲的是爱因斯坦,高斯逝世24年后,爱因斯坦出生于德国乌尔姆市的一个犹太人家庭,10岁时的爱因斯坦在读通俗科学读物和哲学著作,12岁自学欧几里德几何,同时开始自学高等数学,这时爱因斯坦开始怀疑欧几里德的假定,13岁开始读康德的著作15岁爱因斯坦一家移居意大利,16岁爱因斯坦自学完微积分,这年,爱因斯坦开始思考当一个人以光速运动时会看到什么现象,他开始对经典理论的内在矛盾产生困惑,17岁爱因斯坦迁居苏黎世并在瑞士理工学院就读,21岁爱因斯坦拿下学士学位后改国籍瑞士,22岁取得瑞士国籍,24岁爱因斯坦与大学同学米列娃结婚。1905年是爱因斯坦最高产的一年,26岁的爱因斯坦在这年发表了量子论、提出光量子假说,拿下了博士学位,写下了《狭义相对论》,1913年34岁的爱因斯坦重返德国,1914年4月应德国科学界邀请,迁居柏林,8月第一次世界大战爆发,他一生坚决反战,这年他参与反战团体“新祖国同盟”开始了秘密政治活动。1年后,36岁的爱因斯坦创立了《广义相对论》,《广义相对论》距《狭义相对论》刚好10年,1919年40岁的爱因斯坦与妻子离婚并与表姐结婚,他们的母亲是亲姐妹,爱因斯坦二儿子由于近亲遗传问题患先天精神分裂症,终身未娶。1921年因为1905年提出的光子假设理论爱因斯坦获得诺贝尔物理学奖,1933年54岁的爱因斯坦被德国悬赏追杀又一次改国籍,国籍美国,1939年60岁的爱因斯坦上书罗斯福建议美国加快研究原子弹的进程以防止德国抢占先机,1940年致电罗斯福反对他的中立政策,同年,写下著名论文《我不信仰一个人格化的神》,1644年65岁的爱因斯坦为反法西斯以600万美元拍卖狭义相对论手稿,1945年开始讨论核军备的危险性,1946年给联合国写信敦促建立世界政府,1950年反对美国制造氢弹,1952年,以色列政府请他担任第2任总统,被拒绝,1955年76岁的爱因斯坦和罗素讨论和平宣言,同年,爱因斯坦由于大动脉瘤病史主动脉瘤破裂导致大脑溢血破裂逝世,应他的要求,没有丧礼,没有坟墓,不立纪念碑,骨灰撒在永远保密的地方,目的是不会令埋葬他的地方成为圣地。爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,在他的光子假设被公认前,牛顿的绝对空间观处于统治地位,要解决这个问题,爱因斯坦首先要证明光速可变不可变问题,这是《广义相对论》必须首先解决的问题,按照牛顿的绝对空间观,就无法支撑相对论的观点,所以光子假设成了广义相对论的前提。相对论是宇宙观,时空是相对的,那么,时间也是相对的,时间和空间就产生了不可分割的关联,这就是爱因斯坦相对论的哲学观。笛卡尔是哲学家,莱布尼兹是哲学家,爱因斯坦也是哲学家,从这一方面讲,哲学总是和科学有着不可分割的关联,哲学是科学的一种补充,是更高一层的想象,一种向外看的境界。
(8)、拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。
(9)、瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。
(10)、在1621年时,丢番图的那本“算术”书从希腊文翻译成法文在法国出版,费马买到了这书后,对于数论的问题开始发生了兴趣。在公余之后,就对一些希腊数学家的问题研究和推广。
(11)、各种数学家想用他们熟悉的方法来攻克这个问题。这个问题的吸引力是多么的大,是多么的“如此多娇,引无数英雄竞折腰”,可惜全部是败北而去,有些还发了疯。围绕着这个问题是不知产生多少可悲的故事。
(12)、很早以前,人们就对下面一个几何问题产生兴趣:是否能构造一个具有整数边的正方立体,它的体积是等于二个较小的也是具有整数边的正立方体的体积和?
(13)、国际数学节是为了纪念中国古代数学家祖冲之而将每年的3月14日设立的节日。
(14)、怎知另一声音说他应该写库默尔当然晓得正确答案只有一个,至于是69或其他数目,他不能决定了。于是他开始分析,高声说61是质数,不会是一个乘积,65是5的倍数,67也是质数69看来太大,所以答案是63吧!
(15)、在这么多研究费马问题,最有成就的该是德国数学家库沫尔(E.E.Kummer1810—1893),他花了20年的时间想要解决费马问题,最后他以为成功,结果后来给人指出他的理论还有些缺陷不能穷究所有的情况。虽然是这样他的工作对数学的进展有很大的推动,他引进了理想数的概念,建立了代数数论的重要基础理论。他把素数分成正则和不正则两类,费马方程对所有的正则素数是成立,因此主要工作是对不正则的素数来验证,他知道小于164的不正则素数是:101011157因此证明了费马定理对于n小于100时都是成立的。
(16)、有时,他玩的方法也很奇特。一天,他作了一盏灯笼挂在风筝尾巴上。当夜幕降临时,点燃的灯笼借风筝上升的力升入空中。发光的灯笼在空中流动,人们大惊,以为是出现了彗星。尽管如此,因为他学习成绩不好,还是经常受到歧视。
(17)、“我一定要超过他!”一谈到牛顿,人们可能认为他小时候一定是个“神童”、“天才”、有着非凡的智力。其实不然,牛顿童年身体瘦弱,头脑并不聪明。在家乡读书的时候,很不用功,在班里的学习成绩属于次等。但他的兴趣却是广泛的,游戏的本领也比一般儿童高。
(18)、祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。
(19)、是这样,因为平常我们说跟经济最直接的就是挖矿、开矿。在咱们国家大部分的矿山的开采的深度是五百米,很少有超过五百米的,但是特殊的像黄金的金矿,它可以现在达到了一千多米深,甚至是将近两千米。但是油气除外,因为油气它是流体,它可以到几千米的深度。地球在形成过程中,是越重的元素越往下边,所以地球从地表往地核内部来讲,它越往下重金属元素越多,现在我们人类需要的可能是这些个金属物质需要的更多,所以再往下(探测)。那我们可以这样理解,真正的重金属都在里面呢。对,对。是我们长期人类没有探究的地方。对,因为根据咱们的现有的经济技术条件,我们没有那么强的实力去挖下边的矿。那在节目一开始,其实我们已经给观众朋友介绍了,在科技界来讲,我们上天容易,因为都可以到达月球了,可是入地怎么就那么难呢?两位能给我们普及一下吗?
(20)、华罗庚为中国数学发展作出的贡献,被誉为“中国现代数学之父”,“中国数学之神”,“人民数学家”。
(1)、当然最令人刺激的是1908年德国保罗的奖金,当这消息在美国报章宣布时,引起了许多看在钱的份上而去研究这问题的人的狂热。有一个时期有许多关于一些没有受过数学训练的人对这个问题解决的消息的宣布,可是事后证明他们的“证明”不是一窍不通就是胡说八道。
(2)、分享会家长留言在下期分享!数学家故事下集(待续)
(3)、1993年6月23日从剑桥牛顿学院传出费马大定理被证明的消息之后,世界媒体普天盖地般报道了该喜讯。
(4)、他向我们展示了一位数学家的努力和坚持,为了完成一个定理的证明,他可以为之奋斗,倾其一生。
(5)、我们的地球它分成地壳、地幔和地核。地核是地球的内核,像我们鸡蛋的鸡蛋黄似的,内核它的深度大概是两千九百千米。那么到地球最外层有地壳,那么地壳的大陆上的平均深度是三十多千米,到海洋里面就更浅一点,大概是几千米到十千米之间。深地对于不同的学科,它是有区别的,比如说对于地质上来讲,对于地质科研上来讲,我们现在的深地可以是从地表一直到地下十几公里(千米)的深度,就是对于我们地质学家。十几千米深?嗯,打钻取心十几千米就已经是很深了,对于我们生产从我们平常的主要的固体矿山是五百米(深),从五百米以下,我们国家准备向两千米进军,从五百米到两千米(深度)之间的矿藏开采也就是我们的深地的一个主要的内容。那我们理解的这个深地,这个界点在哪里?多深以下算深地?是五百米以上以内,是不算深地吗?还是五百米以下才算深地?肯定是五百米以下。五百米是界点吗?对,五百米可以作为一个(界点)。深地的界面。是绝大部分咱们中国的,那个固体矿产的开采的深度是五百米。那我就明白了。那接下来一个我相信这个时候观众心里一定琢磨这深地,这底下到底有什么东西呢?两位能给我们介绍一下吗?
(6)、一九五三年,由著名科学家钱三强带科学院出国考察。团员有华罗庚、赵九章等许多人。华罗庚题出上联一则:”三强韩、赵、魏,”求对下联。这里的“三强”说明是战国时期韩、赵、魏三个战国,却又隐语着代表团团长钱三强同志的名字。
(7)、高斯的小时候,发现了数字的奥秘,在老师出题目时,他很快的回答了出来,他的方法是将数字的第一位和倒数第一位加起来,以此类推,最后将得数相乘,很快得出了结果50
(8)、1783年,也就是欧拉逝世那年,高斯6岁。数学界间或出现神童,高斯就是其中之但神童之中,又无人能与之媲美。这位数学王子横跨19世纪,和其他伟大数学家不同的是,高斯身在一个贫穷的工人家庭,他的一生都在资助中进行着数学的研究。由于高斯的数学才华太过突出,高斯的数学天赋很小就被发现,10岁就发现了等差数列的原理,11岁高斯就发现了二项式定理。在高斯一生的数学传奇中,他的舅舅扮演着很重要的角色,他的舅舅从事纺织贸易,是一位富有智慧的人,他慧眼识英雄,很早就发现高斯的天赋,开始开发高斯的智力。现在有很多神童,由于小时候没进行正确的引导,最后浪费了上天赐予他的天赋,从这一方面讲,他的舅舅对高斯的影响是很大的,这在高斯悼念他舅舅时表露无遗。身在一个贫穷的家庭,成为伟大的数学家的道路是和其他数学家有很大不同的,在那个还未完成科学研究社会化的年代,科学研究大多是依靠私人资助。在高斯14岁那年,他被推荐给公爵请求资助,1795年,公爵送他进入哥廷根大学,这年高斯18岁,高斯从此开始了创造性的研究,22岁取得博士学位,这期间,高斯的所有费用都由公爵承担。19岁那年,高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则,并用尺规法作出了正十七边形,他是欧几里得之后第一个给出判定并作出图形的人。1801年,24岁的高斯利用数学成功计算出火星和木星之间的另一行星谷神星,而在这之前,世界著名哲学家黑格尔还曾写文章嘲讽天文学家的研究说“按照他的哲学推论只有七颗行星”,高斯成功预测了谷神星的时间、位置并被天文学家成功的观测到,黑格尔很不高兴,虽然黑格尔很不高兴,但对高斯来说这是一件好事,从那以后高斯声名大噪。1806年,公爵在抵抗拿破仑统帅的法军时阵亡,德国处于法国奴役之下,两年后高斯的妻子去世,妻子逝世后一年,高斯的父亲也相继离开人世,这一系列的变故使得高斯的生活处于崩溃的边缘,没有了公爵的资助,高斯连生活问题都很难解决,他迫切需要一份工作维持家用。此时,圣彼得堡向他发出邀请,自1783年欧拉之后,圣彼得堡一直在等待像高斯这样的数学天才,但德国不想失去这位最伟大的天才,1807年,德国科学界为他争取到了哥廷根大学的数学、天文学教授和天文台台长职位,这为德国成为世界科学中心、数学中心创造了条件。1820年前后,高斯开始用纯理论探测大地数据,这期间,他发明了日光反射仪来帮助他进行精确测量,这种回光仪能反射450KM,这期间他还引进了正态分布曲线和标准曲线来辅助他的探测工作,最伟大的是他利用纯数学理论和大量的测量数据发展了曲面论,开创了内蕴几何学,他的学生黎曼受启发发展了一般内蕴几何学,而黎曼的内蕴几何学思想正是爱因斯坦的相对论的数学基础,从这个程度讲,高斯为爱因斯坦的相对论制造了条件,高斯是最早怀疑欧几里得几何学的人之高斯还是非欧几何的开山鼻祖,他很早就怀疑平行公理,也就是我们所说的空间弯曲,后来的罗氏几何回答了直线外一点至少存在两条直线与之平行,高斯的学生黎曼回答了直线外一点不能做与之平行的线的问题,黎曼的回答是同一平面内不存在两条平行的直线,这就是爱因斯坦相对论的来源之一。1833年,高斯和韦伯合作构造出了世界第一台电报机和世界第一张地球磁场图,他和韦伯的合作也因此成为了一段科学奇谈。关于高斯,有太多的故事,高斯是一个讨厌教学的人,他只有几个学生,而他的学生就是提出关于素数频率函数黎曼猜想的著名数学家,高斯在数论、代数、非欧几何、复变函数、微分几何方面作出了惊人的贡献,而他最大的贡献是证明了代数基本定理。高斯天生注定就应该是一位数学传奇人物,最让人羡慕的数学才华,他一人独揽,这多少会让人感叹上帝造人的不公。1855年上帝带走了这位天才,他是人类的骄傲,就在他逝世后不久就铸造了纪念他的钱币、邮票。高斯的传奇一生,也必将影响无数青年,也必然会是数学界永恒的传奇。
(9)、本书收录了高士其科普丛书中脍炙人口的《菌儿自传》《霍乱先生访问记》《生物界的小流氓》等多篇童话。作者以幽默风趣的手法,深入浅出地阐释了一个个科学知识。在作者笔下,菌儿们时而在呼吸道里探险,时而在肺港战斗,时而在肠腔里开会,十分调皮可爱,孩子们也在生动的故事中了解到了细菌对人类生活的影响,以及如何预防危害。
(10)、数学家张广厚有一次看到了一篇关于亏值的论文,觉得对自己的研究工作有用处,就一遍又一遍地反复阅读。这篇论文共20多页,他反反复复地念了半年多。因为经常的反复翻摸,洁白的书页上,留下一条明显的黑印。他的妻子对他开玩笑说,这哪叫念书啊,简直是吃书。
免责声明:
以上内容除特别注明外均来源于网络整理,权益归原著者所有,本站仅作效果演示和欣赏之用;
若以上展示有冒犯或侵害到您,敬请联系我们进行删除处理,谢谢!